Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr ® 250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.more » « less
-
The accumulation of metabolic wastes in cell cultures can diminish product quality, reduce productivity, and trigger apoptosis. The limitation or removal of unintended waste products from Chinese hamster ovary (CHO) cell cultures has been attempted through multiple process and genetic engineering avenues with varied levels of success. One study demonstrated a simple method to reduce lactate and ammonia production in CHO cells with adaptation to extracellular lactate; however, the mechanism behind adaptation was not certain. To address this profound gap, this study characterizes the phenotype of a recombinant CHO K-1 cell line that was gradually adapted to moderate and high levels of extracellular lactate and examines the genomic content and role of extrachromosomal circular DNA (eccDNA) and gene expression on the adaptation process. More than 500 genes were observed on eccDNAs. Notably, more than 1000 genes were observed to be differentially expressed at different levels of lactate adaptation, while only 137 genes were found to be differentially expressed between unadapted cells and cells adapted to grow in high levels of lactate; this suggests stochastic switching as a potential stress adaptation mechanism in CHO cells. Further, these data suggest alanine biosynthesis as a potential stress-mitigation mechanism for excess lactate in CHO cells.more » « less
-
Abstract The ambr250 high-throughput bioreactor platform was adopted to provide a highly-controlled environment for a project investigating genome instability in Chinese hamster ovary (CHO) cells, where genome instability leads to lower protein productivity. Development of the baseline (control) and stressed process conditions highlighted the need to control critical process parameters, including the proportional, integral, and derivative (PID) control loops. Process parameters that are often considered scale-independent, include dissolved oxygen (DO) and pH; however, these parameters were observed to be sensitive to PID settings. For many bioreactors, control loops are cascaded such that the manipulated variables are adjusted concurrently. Conversely, for the ambr250 bioreactor system, the control levels are segmented and implemented sequentially. Consequently, each control level must be tuned independently, as the PID settings are independent by control level. For the CHO cell studies, it was observed that initial PID settings did not resulted in a robust process, which was observed as elevated lactate levels; which was caused by the pH being above the setpoint most of the experiment. After several PID tuning iterations, new PID settings were found that could respond appropriately to routine feed and antifoam additions. Furthermore, these new PID settings resulted in more robust cell growth and increased protein productivity. This work highlights the need to describe PID gains and manipulated variable ranges, as profoundly different outcomes can result from the same feeding protocol. Additionally, improved process models are needed to allow process simulations and tuning. Thus, these tuning experiments support the idea that PID settings should be fully described in bioreactor publications to allow for better reproducibility of results.more » « less
-
Chinese hamster ovary (CHO) cell cultures in industry are most commonly conducted as fed-batch cultures in computer-controlled bioreactors, though most preliminary studies are conducted in fed-batch shake flasks. To improve comparability between bioreactor studies and shake flask studies, shake flask studies should be conducted as fed-batch. However, the smaller volumes and reduced control in shake flasks can impact pH and aeration, which leads to performance differences. Planning and awareness of these vessel and control differences can assist with experimental design as well as troubleshooting. This method will highlight several of the configuration and control issues that should be considered during the transitions from batch to fed-batch and shake flasks to bioreactors, as well as approaches to mitigate the differences. Furthermore, if significant differences occur between bioreactor and shake flask studies, approaches will be presented to isolate the main contributors for these differences.more » « less
An official website of the United States government
